Compares the effects of various independent variables on dependent variables
Source:R/models.R
compareIVs.Rd
Utility to estimate the unadjusted, covariate adjusted, and multivariate adjusted unique contributions of one or more IVs on one or more DVs
Usage
compareIVs(
dv,
type,
iv,
covariates = character(),
data,
multivariate = FALSE,
...
)
Arguments
- dv
A character string or vector of the depentent variable(s)
- type
A character string or vector indicating the type of dependent variable(s)
- iv
A character string or vector giving the IV(s)
- covariates
A character string or vector giving the covariate(s)
- data
The data to be used for analysis
- multivariate
A logical value whether to have models with all IVs simultaneously.
- ...
Additional arguments passed on to the internal function,
.runIt
.
Examples
test1 <- compareIVs(
dv = c("mpg", "disp"),
type = c("normal", "normal"),
iv = c("hp", "qsec"),
covariates = "am",
data = mtcars, multivariate = TRUE)
#> Multivariate uses complete cases for all IVs and covariates
#> Warning: executing %dopar% sequentially: no parallel backend registered
#> Multivariate uses complete cases for all IVs and covariates
test1$OverallSummary
#> dv iv Type R2 D
#> 1 mpg hp Unadjusted 0.589185253 0.602437341
#> 2 mpg hp Adjusted 0.428543631 0.422235690
#> 3 mpg hp MultiUnique 0.100202250 0.101303887
#> 4 mpg qsec Unadjusted 0.147806198 0.175296320
#> 5 mpg qsec Adjusted 0.326783610 0.327040832
#> 6 mpg qsec MultiUnique -0.001557770 0.006109029
#> 7 disp hp Unadjusted 0.613119655 0.625599666
#> 8 disp hp Adjusted 0.452667898 0.445145204
#> 9 disp hp MultiUnique 0.108406045 0.108532739
#> 10 disp qsec Unadjusted 0.161030314 0.188093852
#> 11 disp qsec Adjusted 0.342986638 0.342540154
#> 12 disp qsec MultiUnique -0.001275215 0.005927689
rm(test1)