Skip to contents

Utility to estimate the unadjusted, covariate adjusted, and multivariate adjusted unique contributions of one or more IVs on one or more DVs

## Usage

compareIVs(
dv,
type,
iv,
covariates = character(),
data,
multivariate = FALSE,
...
)

## Arguments

dv

A character string or vector of the depentent variable(s)

type

A character string or vector indicating the type of dependent variable(s)

iv

A character string or vector giving the IV(s)

covariates

A character string or vector giving the covariate(s)

data

The data to be used for analysis

multivariate

A logical value whether to have models with all IVs simultaneously.

...

Additional arguments passed on to the internal function, .runIt.

## Value

A list with all the model results.

## Examples

test1 <- compareIVs(
dv = c("mpg", "disp"),
type = c("normal", "normal"),
iv = c("hp", "qsec"),
covariates = "am",
data = mtcars, multivariate = TRUE)
#> Multivariate uses complete cases for all IVs and covariates
#> Warning: executing %dopar% sequentially: no parallel backend registered
#> Multivariate uses complete cases for all IVs and covariates
test1\$OverallSummary
#>      dv   iv        Type           R2           D
#> 1   mpg   hp  Unadjusted  0.589185253 0.602437341
#> 2   mpg   hp    Adjusted  0.428543631 0.422235690
#> 3   mpg   hp MultiUnique  0.100202250 0.101303887
#> 4   mpg qsec  Unadjusted  0.147806198 0.175296320
#> 5   mpg qsec    Adjusted  0.326783610 0.327040832
#> 6   mpg qsec MultiUnique -0.001557770 0.006109029
#> 7  disp   hp  Unadjusted  0.613119655 0.625599666
#> 8  disp   hp    Adjusted  0.452667898 0.445145204
#> 9  disp   hp MultiUnique  0.108406045 0.108532739
#> 10 disp qsec  Unadjusted  0.161030314 0.188093852
#> 11 disp qsec    Adjusted  0.342986638 0.342540154
#> 12 disp qsec MultiUnique -0.001275215 0.005927689
rm(test1)