Skip to contents

Several internal functions to style inference tests

Usage

.styleaov(dv, g, digits = 2L, pdigits = 3L)

.style2sttest(dv, g, digits = 2, pdigits = 3)

.stylepairedttest(dv, g, ID, digits = 2, pdigits = 3)

.stylepairedwilcox(dv, g, ID, digits = 2, pdigits = 3, ...)

.stylepairedmcnemar(dv, g, ID, digits = 2, pdigits = 3)

.stylekruskal(dv, g, digits = 2, pdigits = 3)

.stylechisq(dv, g, digits = 2, pdigits = 3, simChisq = FALSE, sims = 10000)

.stylemsd(n, x, digits = 2, includeLabel = FALSE)

.stylemdniqr(n, x, digits = 2, includeLabel = FALSE)

.stylefreq(n, x)

Arguments

dv

An outcome variable

g

A grouping/predictor variable

digits

An integer indicating the number of significant digits to use. Defaults to 2.

pdigits

An integer indicating the number of digits for p values. Defaults to 3.

...

Additional arguments passed to wilcox.test.

simChisq

A logical value, whether or not to simulate chi-square values. Only applies to some functions. Defaults to FALSE.

sims

An integer indicating the number of simulations to conduct. Only applies to some functions. Defaults to 10000, but this is arbitrary and should be chosen.

Value

A character string of the formatted results.

Examples


JWileymisc:::.styleaov(mtcars$mpg, mtcars$cyl)
#> [1] "F(1, 30) = 79.56, p < .001, Eta-squared = 0.73"

JWileymisc:::.style2sttest(mtcars$mpg, mtcars$am)
#> [1] "t(df=30) = -4.11, p < .001, d = 1.48"

JWileymisc:::.stylepairedttest(sleep$extra, sleep$group, sleep$ID)
#> [1] "t(df=9) = 4.06, p = .003, d = 1.28"

JWileymisc:::.stylepairedwilcox(sleep$extra, sleep$group, sleep$ID)
#> Warning: cannot compute exact p-value with ties
#> Warning: cannot compute exact p-value with zeroes
#> [1] "Wilcoxon Paired V = 45.00, p = .009"

## example data
set.seed(1234)
exdata <- data.frame(
  ID = rep(1:10, 2),
  Time = rep(c("base", "post"), each = 10),
  Rating = sample(c("good", "bad"), size = 20, replace = TRUE))
JWileymisc:::.stylepairedmcnemar(exdata$Rating, exdata$Time, exdata$ID)
#> [1] "McNemar's Chi-square = 0.25, df = 1, p = .617"
rm(exdata) ## cleanup

JWileymisc:::.stylekruskal(mtcars$mpg, mtcars$am)
#> [1] "KW chi-square = 9.79, df = 1, p = .002"
JWileymisc:::.stylekruskal(mtcars$mpg, mtcars$cyl)
#> [1] "KW chi-square = 25.75, df = 2, p < .001"

JWileymisc:::.stylechisq(mtcars$cyl, mtcars$am)
#> Warning: Chi-squared approximation may be incorrect
#> [1] "Chi-square = 8.74, df = 2, p = .013, Cramer's V = 0.52"

JWileymisc:::.stylemsd("Miles per Gallon", mtcars$mpg)
#>            Variable          Res
#>              <char>       <char>
#> 1: Miles per Gallon 20.09 (6.03)
JWileymisc:::.stylemsd("Miles per Gallon", mtcars$mpg, includeLabel = TRUE)
#>                    Variable          Res
#>                      <char>       <char>
#> 1: Miles per Gallon, M (SD) 20.09 (6.03)

JWileymisc:::.stylemdniqr("Miles per Gallon", mtcars$mpg)
#>            Variable          Res
#>              <char>       <char>
#> 1: Miles per Gallon 19.20 (7.38)
JWileymisc:::.stylemdniqr("Miles per Gallon", mtcars$mpg, includeLabel = TRUE)
#>                       Variable          Res
#>                         <char>       <char>
#> 1: Miles per Gallon, Mdn (IQR) 19.20 (7.38)

JWileymisc:::.stylefreq("Transmission", mtcars$am)
#>        Variable        Res
#>          <char>     <char>
#> 1: Transmission           
#> 2:            0 19 (59.4%)
#> 3:            1 13 (40.6%)
JWileymisc:::.stylefreq("Transmission", mtcars$am)
#>        Variable        Res
#>          <char>     <char>
#> 1: Transmission           
#> 2:            0 19 (59.4%)
#> 3:            1 13 (40.6%)