Create data and plots for brms random effect models
Arguments
- object
a
brmsfit
objectx- usevars
a character vector of random effects to plot
- newdata
a data.table object with the data used to generate the random effects, this is used as an anchor for the random intercepts so they have a meaningful 0 point
- idvar
a character string specifying the grouping variable name for the random effects
- CI
a numeric value between 0 and 1 specifying the interval to use. Defaults to 0.95.
- robust
a logical value indicating whether to use robust estimates or not. Defaults to FALSE. Passed on to
posterior_summary
and.summary.ID
.
Value
a list with the following components:
* plot
: a list of ggplot objects
* plotdat
: a list of data.table objects with the data used to generate the plots
* relong
: a data.table object with the random effects in long format
* yhat
: a list of data.table objects with the expected values for the random effects
* usevars
: a character vector of the random effects to plot
* idvar
: a character string specifying the grouping variable name for the random effects
Examples
# \donttest{
if (FALSE) {
library(data.table)
library(brms)
library(ggpubr)
current.seed <- .Random.seed
set.seed(12345)
nGroups <- 100
nObs <- 20
theta.location <- matrix(rnorm(nGroups * 2), nrow = nGroups, ncol = 2)
theta.location[, 1] <- theta.location[, 1] - mean(theta.location[, 1])
theta.location[, 2] <- theta.location[, 2] - mean(theta.location[, 2])
theta.location[, 1] <- theta.location[, 1] / sd(theta.location[, 1])
theta.location[, 2] <- theta.location[, 2] / sd(theta.location[, 2])
theta.location <- theta.location %*% chol(matrix(c(1.5, -.25, -.25, .5^2), 2))
theta.location[, 1] <- theta.location[, 1] - 2.5
theta.location[, 2] <- theta.location[, 2] + 1
dmixed <- data.table(
x = rep(rep(0:1, each = nObs / 2), times = nGroups))
dmixed[, ID := rep(seq_len(nGroups), each = nObs)]
for (i in seq_len(nGroups)) {
dmixed[ID == i, y := rnorm(
n = nObs,
mean = theta.location[i, 1] + theta.location[i, 2] * x,
sd = exp(1 + theta.location[i, 1] + theta.location[i, 2] * x))
]
}
## note this model takes several minutes, even on a high performance machine
ls.me <- brm(bf(
y ~ 1 + x + (1 + x | p | ID),
sigma ~ 1 + x + (1 + x | p | ID)),
family = "gaussian",
data = dmixed, seed = 1234,
silent = 2, refresh = 0, iter = 2000, warmup = 1000, thin = 1,
chains = 4L, cores = 4L)
out <- ranefdata(
ls.me,
newdata = data.table(ID = dmixed$ID[1], x = 0),
usevars = c("Intercept", "x", "sigma_Intercept", "sigma_x"),
idvar = "ID")
do.call(ggarrange, c(out$replots, ncol=2,nrow=2))
do.call(ggarrange, c(out$scatterplots, ncol=2,nrow=3))
## set seed back to what it was
set.seed(current.seed)
## cleanup
rm(current.seed, nGroups, nObs, theta.location, dmixed, ls.me, out)
}
# }