This function creates a number of diagnostics
for merMod-class models.
Usage
# S3 method for class 'merMod'
modelDiagnostics(
  object,
  ev.perc = 0.001,
  robust = FALSE,
  distr = "normal",
  standardized = TRUE,
  ...
)Arguments
- object
 A fitted model object, either of
merMod-classfrom the lme4 package or merModLmerTest from the lmerTest package.- ev.perc
 A real number between 0 and 1 indicating the proportion of the theoretical distribution beyond which values are considered extreme values (possible outliers). Defaults to .001.
- robust
 Whether to use robust mean and standard deviation estimates for normal distribution
- distr
 A character string given the assumed distribution. Passed on to
testDistribution. Defaults to “normal”.- standardized
 A logical whether to use standardized residuals. Defaults to
TRUEgenerally where possible but may depend on method.- ...
 Additional arguments, passed to
residualDiagnostics.
Value
A logical is.modelDiagnostics or
  a modelDiagnostics object (list) for
  as.modelDiagnostics and
  modelDiagnostics.
Examples
library(JWileymisc)
sleep[1,1] <- NA
m <- lme4::lmer(extra ~ group + (1 | ID), data = sleep)
md <- modelDiagnostics(m, ev.perc = .1)
md$extremeValues
#>    extra     ID Index                     EffectType
#>    <num> <fctr> <int>                         <char>
#> 1:   0.0      9     9                      Residuals
#> 2:  -0.1      5    15                      Residuals
#> 3:   4.6      9    19                      Residuals
#> 4:   3.4      6     6 Random Effect ID : (Intercept)
#> 5:   3.7      7     7 Random Effect ID : (Intercept)
#> 6:   4.4      6    16 Random Effect ID : (Intercept)
#> 7:   5.5      7    17 Random Effect ID : (Intercept)
class(md)
#> [1] "modelDiagnostics.merMod" "modelDiagnostics"       
plot(md)
data(aces_daily, package = "JWileymisc")
m <- lme4::lmer(PosAff ~ STRESS + (1 + STRESS | UserID), data = aces_daily)
md <- modelDiagnostics(m, ev.perc = .1)
#  gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
#    data = lme4::cbpp, family = binomial)
# modelDiagnostics(gm1) ## should be an error
rm(m, md, sleep)