Skip to contents

residualDiagnostics methods for lme objects

Usage

# S3 method for lme
residualDiagnostics(
  object,
  ev.perc = 0.001,
  robust = FALSE,
  distr = "normal",
  standardized = TRUE,
  ...
)

Arguments

object

An object with class lme.

ev.perc

The extreme value percentile to use. Defaults to .001.

robust

A logical value, whether to use robust estimates or not. Defaults to FALSE.

distr

A character string specifying the assumed distribution. Currently “normal”, but future options may be supported in the future.

standardized

A logical value whether to use standardized pearson residual values or not. Defaults to TRUE.

...

Additional arguments. Not currently used.

Value

A logical (is.residualDiagnostics) or a residualDiagnostics object (list) for

as.residualDiagnostics and residualDiagnostics.

Examples


library(JWileymisc)
sleep[1,1] <- NA
m <- nlme::lme(extra ~ group, data = sleep, random = ~ 1 | ID,
  na.action = na.omit)

 residualDiagnostics(m)$Residuals
#>        Residuals  Predicted   isEV Index
#>            <num>      <num> <fctr> <int>
#>  1: -0.700128686 -0.9621668     No     2
#>  2:  0.021691421 -0.2197614     No     3
#>  3: -0.117253346 -1.0931795     No     4
#>  4:  0.658755591 -0.7001414     No     5
#>  5:  0.665700971  2.7935312     No     6
#>  6:  0.323895359  3.4049239     No     7
#>  7:  0.400316839  0.4353022     No     8
#>  8: -1.532411926  1.3960622     No     9
#>  9:  0.279433777  1.7454295     No    10
#> 10: -0.106066416  1.9966289     No    11
#> 11:  0.165397761  0.6493189     No    12
#> 12: -0.320216242  1.3917243     No    13
#> 13: -0.459161009  0.5183061     No    14
#> 14: -1.110119656  0.9113443     No    15
#> 15: -0.005506903  4.4050169     No    16
#> 16:  0.530821382  5.0164096     No    17
#> 17: -0.490424510  2.0467879     No    18
#> 18:  1.747982740  3.0075479     No    19
#> 19:  0.047292851  3.3569151     No    20

m <- nlme::lme(hp ~ mpg, data = mtcars, random = ~ 1 | cyl,
  na.action = na.omit)
residualDiagnostics(m)$Residuals
#>       Residuals Predicted   isEV Index
#>           <num>     <num> <fctr> <int>
#>  1: -0.23664029 118.76861     No     1
#>  2: -0.23664029 118.76861     No     2
#>  3: -0.22511638 101.34160     No     3
#>  4: -0.18972936 117.03034     No     4
#>  5: -0.43428124 191.09211     No     5
#>  6: -0.71168060 131.37103     No     6
#>  7:  0.93880308 210.21303     No     7
#>  8: -0.87407610  94.38853     No     8
#>  9: -0.17114196 101.34160     No     9
#> 10: -0.09690578 126.59080     No    10
#> 11: -0.26109405 132.67473     No    11
#> 12: -0.56908306 201.08714     No    12
#> 13: -0.46353346 197.17604     No    13
#> 14: -0.70981586 206.30194     No    14
#> 15: -0.59806685 227.16112     No    15
#> 16: -0.32819477 227.16112     No    16
#> 17:  0.58090589 208.47477     No    17
#> 18:  0.17209140  59.62322     No    18
#> 19: -0.44028418  68.31455     No    19
#> 20:  0.32102019  53.10473     No    20
#> 21: -0.26962808 106.99096     No    21
#> 22: -1.48424891 204.99824     No    22
#> 23: -1.51943211 206.30194     No    23
#> 24:  0.82152575 214.55870     No    24
#> 25: -0.37564257 188.91928     No    25
#> 26: -0.42602300  81.78611     No    26
#> 27:  0.09619667  87.43547     No    27
#> 28:  1.20593552  68.31455     No    28
#> 29:  1.62747604 203.69454     No    29
#> 30:  1.36506772 124.41797     No    30
#> 31:  3.44974596 207.17107    Yes    31
#> 32:  0.04249069 107.42552     No    32
#>       Residuals Predicted   isEV Index

rm(m, sleep)