residualDiagnostics methods for merMod objects
Source:R/diagnostics.R
residualDiagnostics.merMod.Rd
residualDiagnostics methods for merMod objects
Usage
# S3 method for merMod
residualDiagnostics(
object,
ev.perc = 0.001,
robust = FALSE,
distr = "normal",
standardized = TRUE,
...
)
Arguments
- object
An object with class
merMod
. Currently onlylmer()
models are supported.- ev.perc
The extreme value percentile to use. Defaults to .001.
- robust
A logical value, whether to use robust estimates or not. Defaults to
FALSE
.- distr
A character string specifying the assumed distribution. Currently “normal”, but may expand in the future if
glmer()
models are supported.- standardized
A logical value whether to use standardized residual values or not. Defaults to
TRUE
.- ...
Additional arguments. Not currently used.
Value
A logical (is.residualDiagnostics
) or
a residualDiagnostics object (list) for
as.residualDiagnostics
and residualDiagnostics
.
Examples
library(JWileymisc)
sleep[1,1] <- NA
m <- lme4::lmer(extra ~ group + (1 | ID), data = sleep)
residualDiagnostics(m)$Residuals
#> Residuals Predicted isEV Index
#> <num> <num> <fctr> <int>
#> 1: -0.700128956 -0.9621661 No 2
#> 2: 0.021690939 -0.2197610 No 3
#> 3: -0.117254135 -1.0931787 No 4
#> 4: 0.658754382 -0.7001407 No 5
#> 5: 0.665701421 2.7935304 No 6
#> 6: 0.323896367 3.4049228 No 7
#> 7: 0.400316373 0.4353024 No 8
#> 8: -1.532410421 1.3960619 No 9
#> 9: 0.279434030 1.7454290 No 10
#> 10: -0.106066615 1.9966292 No 11
#> 11: 0.165396845 0.6493196 No 12
#> 12: -0.320216425 1.3917247 No 13
#> 13: -0.459161498 0.5183069 No 14
#> 14: -1.110119449 0.9113449 No 15
#> 15: -0.005505897 4.4050160 No 16
#> 16: 0.530822260 5.0164084 No 17
#> 17: -0.490424247 2.0467880 No 18
#> 18: 1.747981709 3.0075476 No 19
#> 19: 0.047293317 3.3569147 No 20
# gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
# data = lme4::cbpp, family = binomial)
# residualDiagnostics(gm1) ## should be an error
rm(m, sleep)