residualDiagnostics methods for merMod objects
Source:R/diagnostics.R
residualDiagnostics.merMod.Rd
residualDiagnostics methods for merMod objects
Usage
# S3 method for class 'merMod'
residualDiagnostics(
object,
ev.perc = 0.001,
robust = FALSE,
distr = "normal",
standardized = TRUE,
cut = 8L,
quantiles = TRUE,
...
)
Arguments
- object
An object with class
merMod
. Currently onlylmer()
models are supported.- ev.perc
The extreme value percentile to use. Defaults to .001.
- robust
A logical value, whether to use robust estimates or not. Defaults to
FALSE
.- distr
A character string specifying the assumed distribution. Currently “normal”, but may expand in the future if
glmer()
models are supported.- standardized
A logical value whether to use standardized residual values or not. Defaults to
TRUE
.- cut
An integer, how many unique predicted values there have to be at least for predicted values to be treated continuously, otherwise they are treated as discrete values. Defaults to 8.
- quantiles
A logical whether to calculate quantiles for the residuals. Defaults to
TRUE
. IfFALSE
, then do not calculate them. These are based on simple quantiles for each predicted value if the predicted values are few enough to be treated discretely. Seecut
argument. Otherwise they are based on quantile regression. First trying smoothing splines, and falling back to linear quantil regression if the splines fail. You may also want to turn these off if they are not working well, or are not of value in your diagnostics.- ...
Additional arguments. Not currently used.
Value
A logical (is.residualDiagnostics
) or
a residualDiagnostics object (list) for
as.residualDiagnostics
and
residualDiagnostics
.
Examples
library(JWileymisc)
sleep[1,1] <- NA
m <- lme4::lmer(extra ~ group + (1 | ID), data = sleep)
residualDiagnostics(m)$Residuals
#> Residuals Predicted isEV Index
#> <num> <num> <fctr> <int>
#> 1: -0.700128956 -0.9621661 No 2
#> 2: 0.021690939 -0.2197610 No 3
#> 3: -0.117254135 -1.0931787 No 4
#> 4: 0.658754382 -0.7001407 No 5
#> 5: 0.665701421 2.7935304 No 6
#> 6: 0.323896367 3.4049228 No 7
#> 7: 0.400316373 0.4353024 No 8
#> 8: -1.532410421 1.3960619 No 9
#> 9: 0.279434030 1.7454290 No 10
#> 10: -0.106066615 1.9966292 No 11
#> 11: 0.165396845 0.6493196 No 12
#> 12: -0.320216425 1.3917247 No 13
#> 13: -0.459161498 0.5183069 No 14
#> 14: -1.110119449 0.9113449 No 15
#> 15: -0.005505897 4.4050160 No 16
#> 16: 0.530822260 5.0164084 No 17
#> 17: -0.490424247 2.0467880 No 18
#> 18: 1.747981709 3.0075476 No 19
#> 19: 0.047293317 3.3569147 No 20
# gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
# data = lme4::cbpp, family = binomial)
# residualDiagnostics(gm1) ## should be an error
rm(m, sleep)